STR3060B 三相交直流标准源

使用说明

书

河南星创科技发展有限公司

目 录

1	概述		1
2	主要特	-	1
3	主要技	支术指标	1
4	按键说	总明	2
	4.1	功能键、数字键、控制键	2
	4.2	试验点快捷键,按下后直接输出相应功能	3
5	操作说	总明	3
	5.1	交流标准输出界面	3
		5.1.1 电压量程设定	4
		5.1.2 电流量程设定	5
		5.1.3 交流电压设定	5
		5.1.4 交流电流设定	5
		5.1.5 相位设定	6
		5.1.6 频率设定	6
		5.1.7 有功功率 P 设定	6
		5.1.8 无功功率 Q 设定	7
		5.1.9 谐波设定	7
		5.1.10 快捷键电压(U)、电流(I)百分比试验点的使用	8
		5.1.11 快捷键功率因数(PF)试验点的使用	8
		5.1.12 SET 设置模式	9
		5.1.13 电能参数设定	9
		5.1.14 变送输入类型选择	9
		5.1.15 查看电能误差和电能脉冲频率	9
		5.1.16 ON/OFF 功能使用说明	9
		5.1.17 全波测量/基波测量(对电流、电压输出的测量)	10
		5.1.18 故障提示	10
		5.1.19 其他	10
	5.2	相位输出界面	10
		5.2.1 基本功能	11
		5.2.2 矢量图显示	11
		5.2.3 波形显示	11
	5.3	谐波显示	12
		5.3.1 基本功能	12
		5.3.2 查看三相电压,三相电流各次谐波	12
		5.3.3 谐波配方设置	13
	5.4	直流输出	14
		5.4.1 电压量程设定	14
		5.4.2 电流量程设定	14
		5.4.3 直流电压设定	15

STR3060B 三相交直流标准源

		5.4.4 直流电流设定	15
		5.4.6 变送测量功能	15
6	附录		15
	6.1	标准输出界面	15
		6.1.1 虚拟软键盘按键功能说明	16
		6.1.2 基本功能	16
		6.1.3 软件界面切换	16
		6.1.4 脉冲常数、脉冲个数的设置	18
	6.2	相位输出界面	19
		6.2.1 基本功能	19
		6.2.2 快捷键操作	20
	6.3	谐波显示界面	20
		6.3.1 基本功能	20
		6.3.2 快捷键操作	21
	6.4	直流输出界面	21
		6.4.1 基本功能	21
		6.4.2 快捷键操作	22
	6.5	仪器校准(支持 USB 鼠标操作)	22
		6.5.1 输入密码	22
		6.5.2 交流输出校准	23
		6.5.3 直流输出校准	24
		6.5.4 直流测量校准	25
	6.6	参数设置(支持 USB 鼠标操作)	25
	参数	收设置界面如下:	25
		6.6.1 参数设置	26
		6.6.2 其他	26
7	设备接	8口接线说明:	27

1 概述

STR3060B 三相交直流标准源是基于高速 32 位 DSP、大规模可编程逻辑阵列 FPGA、高速高精度 AD、 DA 转换电路以及高保真功率放大器构成的新一代高精度交直流标准源。适用于多种电压、电流、功率、相位、 频率等电参数设备的检测和校正,是电力部门、计量部门、质检部门、科研单位、高等院校及电能表配电终端、 用电管理、负荷控制、电能质量、无功补偿装置等生产研发企业的理想设备。

2 主要特点

- ◆ 国内首创将系统、测试和信号产生集成在一个模块上,产品集成度高,故障率低,体积小,重量轻,响应速度快,效率高,可靠性高,功能强,输出功率大,标准源输出。
- ◆ 输出交直流电压、电流、相位和功率均为高精度、高稳定度标准源,软件校准。各项输出均采用动态 负载自动调整技术,降低了负载调整率。
- → 采用高速交流采样、高速数字信号处理器(DSP)、复杂可编程逻辑阵列(CPLD)、大功率集成功放、 嵌入式计算机系统设计而成,将系统、测试和信号高度集成,体积小,重量轻,,可靠性极高,功能 性极强。
- → 可广泛用于检测各种数字仪表、指示仪表、电能表、互感器、数字测控装置、变送器、交流采样装置、 负控终端、用电管理终端、集中器、无功补偿控制器及其他电子产品的各项指标。
- ◇ 可软件校准输出电压、电流、相位和功率,各项输出均采用动态负载自动调整技术,降低了负载调整率。
- ◆ 可叠加输出 2-51 次的谐波,同时显示各次谐波的幅度和初始相位。
- → 支持 USB 鼠标、结合虚拟软件键盘,实现鼠标操作。
- ◇ 完善的过流、过压、过热、短路、开路、过载保护。
- ◇ 丰富的外设接口,便与上位机实现数据交换和人机交互。

3 主要技术指标

交流电压输出

量程设定	57.7V、100V、220V、380V、 自由档
调节范围	0-120%
调节细度	0.002%
准确度	0.1%/0.05%/0.02%(可选)
稳定度	0.01%/2min
输出负载	每相 20VA/25VA/35VA(可选)
失真度	≤ 0.2%(非容性负载)

交流电流输出

量程设定	1A、2A、5A、20A、 自由档
	0-120%
调节细度	0.002%
准确度	0.1%/0.05%/0.02%(可选)
稳定度	0.01%/2min
输出负载	每相 20VA/25VA/35VA(可选)
失真度	≤ 0.2%(非容性负载)

相付

调节范围	0-359.99°
分辨率	0.001°
准确度	0.002°

频率

调节范围	30Hz-70Hz
分辨率	0.001Hz
准确度	0.002Hz

有功功率

准确度	0.05%
调节细度	0.002%

功率因数

调节范围	-1 - 0 - +1
分辨率	0.00001
准确度	0.05%

直流电压输出

	1000V、600V、300V、100V、
量程设定	10V、1V、200mV、75mV、
	自由档
调节范围	0-120%
调节细度	0.002%
准确度	0.1%/0.05%/0.02%(可选)
稳定度	0.01%/2min
输出负载	≤ 5VA

直流电压输入

量程范围	-15V ~ 0 ~ 15V
准确度	0.05%
稳定度	0.01%/2min

环境条件

工作温度	0°C ~ 40°C
相对湿度	≤ 85%
存储条件	-20°C ~ 60°C

4 按键说明

4.1 功能键、数字键、控制键

无功功率

准确度	0.1%
调节细度	0.002%

谐波输出

谐波次数	2-51 次、可多达 10 次叠加						
谐波总含量	0-40%可调						
准确度	2-31次 0.5%、32-51次 1%						

直流电流输出

量程设定	20A、5A、1A、100mA、50mA、 20mA、1mA、200uA、自由档					
调节范围	0-120%					
调节细度	0.002%					
准确度	0.1%/0.05%/0.02%(可选)					
稳定度	0.01%/2min					
输出负载	≤ 5VA					

直流电流输入

量程范围	-30mA ~ 0 ~ 30mA
准确度	0.05%
稳定度	0.01%/2min

其他

工作电源	单相 220V±10%					
体积	450*520*155(mm)					
重量	16kg					

[PgUp]	界面切换,上一个界面	[U]	设置、显示、调节电压
[PgDown]	界面切换,下一个界面	[1]	设置、显示、调节电流
[SET]	全屏编辑模式	[Φ]	设置、显示、调节相位
[IMP]	切换显示电能误差或脉冲频率等	[F]	设置、显示、调节频率
[ON/OFF]	源输出/源停止(含暂停功能)	[P]	设置、显示、调节有功功率
【Zero】	电流、电压、功率输出归零	[Q]	设置、显示、调节无功功率
	初始化相位, 取消谐波		
[Vrange]	电压量程切换	[Xb]	设置谐波
[\(\sum \) \(\)	三相四线/三相三线 线制切换	[A] [B] [C]	相序指示
【Irange】	电流量程切换	[0-9]	数字键
[→]	光标右移	[.]	小数点
[←]	光标左移	[-]	负 号 键
[Ent]	确认键		

4.2 试验点快捷键,按下后直接输出相应功能

【0L】【0.5L】【0.8L】【1】【0.8C】【0.5C】【0C】							
[120%] [100%] [80%] [60%]	[50%] [40%] [20%] [10%]	】结合【U】电压百分比快捷键					
[5%] [0.5%] [0.05%] [0%]		结合【I】 电流百分比快捷键					

5 操作说明

在操作标准源之前,请仔细阅读本说明书中关于操作安全和操作规范的相关描述。否则,可能会产生意外, 对使用者人身或者设备造成伤害。

警告

为避免触电或引发火灾,请注意下列安全条款:

- ◆ 使用前,仔细检查标准源的输出端子、测试导线等绝缘部分是否有损坏的情况。如有损坏,应立即更换。
- ◆ 电压输出不能短路、电流输出不能开路;操作者启动电压、电流输出之前应保证正确的外部连线,暂时离开时请关闭源输出。
- ◆ 在本设备与其它设备联机通讯前应断开所有设备电源,然后再连接通信线;带电连接可能 会对设备 造成损害。
- ◆ 使用本设备时,请务必保证设备接地良好,否则指标可能会受影响。
- ◆ 不可以用手接触设备的电压输出端以免触电。
- ◆ 仪器端子为标准源输出,不能接入任何其它电源。
- ◆ 设备出现问题请及时通知本公司维修,非专业人员不可以拆开本设备。

5.1 交流标准输出界面

参量	A相	B相	C相	
57.7V	0.0000	0.0000	0.0000	脉冲常数
1.0A	0.00000	0.00000	0.00000	
ΦU(°)	0.00	120.00	240.00	脉冲个数
ΦI(°)	0.00	120.00	240.00	
P (w)	0.0000	0.0000	0.0000	0.000
Q(var)	0.0000	0.0000	0.0000	0.000
S (VA)	0.0000	0.0000	0.0000	0.000
PF	1.00000	1.00000	1.00000	0.00000
F(Hz)	50.000	50.000	50.000	Σ
状态	标准输出	Y型 基沙	支 全波测量	量 源停止

名词解释

电能常数	电能脉冲常数,出厂默认值为 10000imp/kWh
脉冲个数	本校验装置测量到电能表对应脉冲个数后计算电能误差精度,出厂默认值为 20
EP 误差	本装置根据测量到的有功脉冲频率,计算后得到的数值
EQ 误差	本装置根据测量到的无功脉冲频率,计算后得到的数值
EP(Hz)	本装置测量到的有功电能脉冲的频率值
EQ(Hz)	本装置测量到的无功电能脉冲的频率值
EP 计数	本装置测量到的有功电能脉冲计数值,按 ZERO 键可清零
EQ 计数	本装置测量到的无功电能脉冲计数值,按 ZERO 键可清零
输入电压	对-15V ~ 0 ~ 15V 信号的变送测量
输入电流	对-30mA ~ 0 ~ 30mA 信号的变送测量

5.1.1 电压量程设定

- ◆ 按【Vrange】键,可直接切换电压量程档位(57.7V、100V、220V、380V、灵活档(用户可自行设定))。
- ◆ 按【数字】【Vrange】键,可自行设定灵活档的电压量程,量程范围为5V-500V(有效值);如果设定电压量程小于5V,则设定失败;如果设定电压量程大于500V,则按量程的设定最大值500V设定当前电压量程。
- ◆ 切换电压量程档位时,三相电压输出自动降为 0V。

5.1.2 电流量程设定

- ◆ 按【Irange】键,可直接切换电流量程档位(1A,2A,5A,20A,灵活档(用户可自行设定))。
- ◆ 按【数字】【Irange】键,可自行设定灵活档的电流量程,量程范围为 0.1A-24A(有效值);如果设定电流量程小于 0.1A,则设定失败;如果设定电流量程大于 24A,则按量程的设定最大值 24A 设定当前电流量程。
- ◆ 切换电流量程档位时,三相电流自动输出降为0A。

5.1.3 交流电压设定

- ◆ 按【数字】【U】【Enter】键,同时设置三相电压(Ua=Ub=Uc)。
 - 【数字】【U】【A】【Enter】键,设置Ua电压。
 - 【数字】【U】【B】【Enter】键,设置Ub电压。
 - 【数字】【U】【C】【Enter】键,设置Uc电压。
- ◆ 用户若想用旋转编码器来调整设定值,按【U】【Enter】键,窗口显示U=XXX.XXXV,U=Ua=Ub=Uc(如果原值Ua≠Ub≠Uc,则取Ua),光标指在个位数上,按【←】或【→】键左移或右移光标一位,转动编码器可同时调节三相电压Ua、Ub、Uc;当前可调节的最高电压为当前电压量程的120%。同理按
 - 【U】【A】【Enter】键,窗口显示 UA = XXX.XXX V,转动编码器调节 Ua。
 - 【U】【B】【Enter】键,窗口显示 UB = XXX.XXX V,转动编码器调节 Ub。
 - 【U】【C】【Enter】键,窗口显示 UC = XXX.XXX V,,转动编码器调节 Uc。
- ◆ 【数字】超电压量程 120%时,按量程 120%输出。
- ◆ 三相相电压能够输出的最大值为 500V(有效值);如果灵活档的电压量程设定为 500V,那最大输出为 500V。

5.1.4 交流电流设定

- ◆ 按【数字】【I】【Enter】键,同时设置三相电流(Ia=Ib=Ic)。
 - 【数字】【I】【A】【Enter】键,设置 Ia 电流。
 - 【数字】【I】【B】【Enter】键,设置Ib电流。
 - 【数字】【I】【C】【Enter】键,设置Ic电流。
- ◆ 用户若想用旋转编码器来调整设定值,按【I】【Enter】键,窗口显示 I = XXX.XXX A , I=Ia=Ib=Ic(如果原值 Ia≠Ib≠Ic,则取 Ia),光标指在个位数上,按【←】或【→】键左移或右移光标—位,转动编码器可同时调节三相电流 Ia、Ib、Ic;当前可调节的最高电流为当前电流量程的 120%。同理按
 - 【I】【A】【Enter】键,窗口显示 IA = XXX.XXX A, 转动编码器调节 Ia。
 - 【I】【B】【Enter】键,窗口显示 IB = XXX.XXX A,转动编码器调节 Ib。
 - 【I】【C】【Enter】键,窗口显示 IC = XXX.XXX A,转动编码器调节 Ic。
- ◆ 【数字】超电流量程 120%时,按量程 120%输出。
- ◆ 三相电流能够输出的最大值为 24A(有效值);如果灵活档的电流量程设定为 24A,那最大输出为 24A。

5.1.5 相位设定

- ◆ 按【数字】 【Φ】【Enter】键,设置三相电压与三相电流之间的相位∠UaIa,∠UbIb,∠UcIc。
 - 【数字】【Φ】【A】【Enter】键,设置∠UaIa 相位。
 - 【数字】【Φ】【B】【Enter】键,设置∠UbIb 相位。
 - 【数字】【Φ】【C】【Enter】键,设置∠UcIc相位。
 - 【数字】【Φ】【U】【B】【Enter】键,设置∠UaUb 相位。
 - 【数字】【Φ】【U】【C】【Enter】键,设置∠UaUc 相位。
 - 【数字】【Φ】【I】【A】【Enter】键,设置∠UaIa 相位。
 - 【数字】【Φ】【I】【B】【Enter】键,设置∠UaIb相位。
 - 【数字】【Φ】【I】【C】【Enter】键,设置∠UaIc相位。
- ◆ 用户若想用旋转编码器来调整设定值,按【Φ】【Enter】键,窗口显示Φ = XXX.XX°(如果原值∠UaIa≠∠UbIb≠∠UcIc,则取∠UaIa),按【←】或【→】键左移或右移光标一位;转动编码器可同时调节三相电压与三相电流之间的相位∠UaIa、∠UbIb、∠UcIc。同理按
 - 【Φ】【A】【Enter】键,窗口显示ΦA = XXX.XX°,转动编码器调节∠UaIa。
 - 【Φ】【B】【Enter】键,窗口显示ΦB = XXX.XX°,转动编码器调节∠UbIb。
 - 【Φ】【C】【Enter】键,窗口显示ΦC = XXX.XX°,转动编码器调节∠UcIc。
 - 【Φ】【U】【B】【Enter】键,窗口显示ΦUB = XXX.XX°,转动编码器调节∠UaUb。
 - 【Φ】【U】【C】【Enter】键,窗口显示ΦUC = XXX.XX°,转动编码器调节∠UaUc。
 - 【Φ】【I】 【A】【Enter】键,窗口显示ΦIA = XXX.XX°,转动编码器调节∠UaIa。
 - 【Φ】【I】 【B】【Enter】键,窗口显示ΦIB = XXX.XX°,转动编码器调节∠UaIb。
 - 【Φ】【I】【C】【Enter】键,窗口显示ΦIC = XXX.XX°,转动编码器调节∠UaIc。
- ◆ 相位的显示范围在【0, 359.999°】之间。
- ◆ 如果设定相位的【数字】在【0, 359.999°】区间之外,仪器会自动计算,使相位最终落在【0, 359.99】区间之内。

5.1.6 频率设定

- ◆ 按【数字】【F】【Ent】键,设置频率。
- ◆ 按【F】【Ent】键,窗口显示 F = XXX.XXX Hz, 光标定位在个位数上,按【←】键光标左移,按【→】键光标右移,转动编码器可调节当前设定值。
- ◆ 频率的设定范围在 30Hz-70Hz 之间,如果设定频率超出此范围,就按设定范围的最小,最大值处理。

5.1.7 有功功率 P 设定

- ◆ 在设定有功功率之前,需要先设定好电压与相位。
- ◆ 按【数字】【P】键,设置三相有功总功率;
 - 【数字】【P】【A】【Enter】键,设置A相有功功率;
 - 【数字】【P】【B】【Enter】键,设置B相有功功率;

【数字】【P】【C】【Enter】键,设置C相有功功率;

- ◆ 用户若想用旋转编码器来调整设定值,按【P】【Enter】键,窗口显示三相有功总功率ΣP = XX X XXX W,光标指在个位数上,按【←】键光标左移,按【→】键光标右移,转动编码器可调节当前三相有功总功率。同理按
 - 【P】【A】【Enter】键,窗口显示 PA = XXX.XXX W,转动编码器调节 Pa。
 - 【P】【B】【Enter】键,窗口显示 PB = XXX.XXX W,转动编码器调节 Pb。
 - 【P】【C】【Enter】键,窗口显示 PC = XXX.XXX W,转动编码器调节 Pc。

5.1.8 无功功率 Q 设定

- ◆ 在设定无功功率之前,需要先设定好电压与相位。
- ◆ 按【数字】【Q】键,设置三相无功总功率。
 - 【数字】【Q】【A】【Enter】键,设置A相无功功率。
 - 【数字】【Q】【B】【Enter】键,设置B相无功功率。
 - 【数字】【Q】【C】【Enter】键,设置C相无功功率。
- ◆ 用户若想用旋转编码器来调整设定值,按【Q】【Enter】键,活动窗口显示三相无功总功率ΣQ = XXX.XXX var,光标指在个位数上,按【←】键光标左移,按【→】键光标右移,转动编码器可调节当前三相无功总功率。

同理按

- 【Q】【A】【Enter】键,窗口显示 QA = XXX.XXX var, 转动编码器调节 Qa。
- 【Q】【B】【Enter】键,窗口显示 QB = XXX.XXX var, 转动编码器调节 Qb。
- 【Q】【C】【Enter】键,窗口显示 QC = XXX.XXX var, 转动编码器调节 Qc。

5.1.9 谐波设定

◆ 谐波设定格式: 【次数】【Xb】【幅度】【Xb】【相位】【Xb】【电量】【相别】【Enter】

其中:【次数】设定谐波次数,范围为2-63,超出范围提示出错。

【幅度】设定谐波幅度,范围为0-40%,单位为百分比,超出范围提示出错。

【相位】设定谐波的相位,范围为 0-359.99°,单位为度,超出范围提示出错,缺省

时,默认相位为0。

【电量】为 U 或 I, 按其他键无效, 缺省时为三相电压和三相电流同时叠加谐波。

【相别】指 A、B、C 三相,缺省时为三相电压或三相电流同时叠加。

- 按【Enter】结束谐波编辑,如果谐波设定格式正确,此时状态栏中,"基波"改成"谐波"状态且背景色高亮显示。
- 谐波编辑结束后,可按【PageDown】或【PageUp】键,进入"谐波显示"界面来查询谐波输入后的状态。
- 按【Xb】【Zero】键,清除谐波。
- 按【Zero】键,清除基波、谐波。
- 举例:

例 1:设置三相电压、电流同时叠加 2 次, 20%幅度,相位为 60°的谐波,操作如下:

[2] [Xb] [20] [Xb] [60] [Xb] [Enter]

例 2:设置三相电流同时叠加 5次,10%幅度,相位为 0的谐波,操作如下:

[5] [Xb] [10] [Xb] [Enter]

例 3:设置三相电压同时叠加 3次, 40%幅度,相位为 10°的谐波,操作如下:

[3] [Xb] [40] [Xb] [10] [Xb] [U] [Enter]

例 4:设置 A 相电压叠加 5次, 15%幅度,相位为 30°的谐波,操作如下:

[5] [Xb] [15] [Xb] [30] [Xb] [U] [A] [Enter]

5.1.10 快捷键电压(U)、电流(I)百分比试验点的使用

- ◆ 电压、电流试验点使用同一组快捷键。
- ◆ 按【U】【U/I 快捷键】设定当前三相电压 Uabc, Uabc=当前电压量程*当前比率;且当前三相电压状态 具有保持功能,如果下一步继续按【U/I 快捷键】,则根据当前比率重新设定三相电压,如果按其他键,则三相电压状态不再保持,再按【U/I 快捷键】,无任何功能。
- ◆ 按【U】【A】【U/I 快捷键】设定当前 A 相电压 Ua, Ua=当前电压量程*当前比率; 且当前 A 相电压状态具有保持功能,如果下一步继续按【U/I 快捷键】,则根据当前比率重新设定 A 相电压,如果按其他键,则 A 相电压状态不再保持,再按【U/I 快捷键】,无任何功能。
- ◆ 按【U】【B】【U/I 快捷键】设定当前 B 相电压 Ub, Ub=当前电压量程*当前比率; 且当前 B 相电压状态具有保持功能,如果下一步继续按【U/I 快捷键】,则根据当前比率重新设定 B 相电压,如果按其他键,则 A 相电压状态不再保持,再按【U/I 快捷键】,无任何功能。
- ◆ 按【U】【C】【U/I 快捷键】设定当前 C 相电压 Uc, Uc=当前电压量程*当前比率;且当前 C 相电压状态具有保持功能,如果下一步继续按【U/I 快捷键】,则根据当前比率重新设定 C 相电压,如果按其他键,则 C 相电压状态不再保持,再按【U/I 快捷键】,无任何功能。
- ◆ 按【I】【U/I 快捷键】设定当前三相电流 Iabc, Iabc=当前电流量程*当前比率; 且当前三相电流状态具有保持功能,如果下一步继续按【U/I 快捷键】,则根据当前比率重新设定三相电流,如果按其他键,则三相电流状态不再保持,再按【U/I 快捷键】,无任何功能。
- ◆ 按【I】【A】【U/I 快捷键】设定当前 A 相电流 Ia, Ia=当前电流量程*当前比率; 且当前 A 相电流状态具有保持功能,如果下一步继续按【U/I 快捷键】,则根据当前比率重新设定 A 相电流,如果按其他键,则 A 相电流状态不再保持,再按【U/I 快捷键】,无任何功能。
- ◆ 按【I】【B】【U/I 快捷键】设定当前 B 相电流 Ib, Ib=当前电流量程*当前比率;且当前 B 相电流状态具有保持功能,如果下一步继续按【U/I 快捷键】,则根据当前比率重新设定 B 相电流,如果按其他键,则 B 相电流状态不再保持,再按【U/I 快捷键】,无任何功能。
- ◆ 按【I】【C】【U/I 快捷键】设定当前 C 相电流 Ic, Ic=当前电流量程*当前比率; 且当前 C 相电流状态具有保持功能,如果下一步继续按【U/I 快捷键】,则根据当前比率重新设定 C 相电流,如果按其他键,则 C 相电流状态不再保持,再按【U/I 快捷键】,无任何功能。

5.1.11 快捷键功率因数(PF)试验点的使用

- ◆ 按【Φ】【PF 试验点】设定三相电压与三相电流之间的相位。
- ◆ 按【Φ】【A】【PF 试验点】设定 A 相电压与 A 相电流之间的相位。
- ◆ 按【Φ】【B】【PF 试验点】设定 B 相电压与 B 相电流之间的相位。
- ◆ 按【Φ】【C】【PF 试验点】设定 C 相电压与 C 相电流之间的相位。

5.1.12 SET 设置模式

◆ 按【SET】键,进入全屏编辑模式,首先选中的是左上角的第一个电参量(电压量程),该电参量底色显示为蓝色;转动编码器,可依次选中各个电参数;按【数字】【Ent】键,设置当前被选中的电参数值;再按【SET】键,退出全屏编辑模式。需要注意的是,设置完成后一定要确保已退出全屏编辑模式(此时没有那个电参量底色显示为蓝色),否则,其它操作不能进行。

5.1.13 电能参数设定

- ◆ 电能设置参数包括电能常数和脉冲个数。
- ◆ 在源停止状态下,显示电能常数和脉冲个数;在源输出状态下,按【IMP】键可切换显示电能误差、脉冲 频率、脉冲计数。
- ◆ 如果要设置电能参数,先按【SET】键,进入全屏编辑模式,然后转动编码器或按【←】、【→】键,选中电能常数或脉冲个数,按【数字】【Enter】键,设置电能常数或脉冲个数;最后按【SET】键,退出全屏编辑模式。
- ◆ 电能常数的设定范围在【1, 10⁸】之间;如果设定数据小于1,则设定失败;如果设定数据大于10⁸,则 按电能常数的最大设定值10⁸设定当前电能常数。
- ◆ 脉冲个数的设定范围在【1,65535】之间;如果设定数据小于1,则设定失败;如果设定数据大于65535,则按脉冲个数的最大设定值65535设定当前脉冲个数。

5.1.14 变送输入类型选择(增选功能)

- ◆ 直流变送输入测量类型包括输入电压和输入电流两种类型。
- ◆ 如果要改变当前变送输入类型,先按【SET】键,进入全屏编辑模式,然后转动编码器或按【←】、【→】键,选中变送输入类型(输入电流或输入电压),再按【Enter】键,则改变当前变送输入类型;最后再次按【SET】键,退出全屏编辑模式。

5.1.15 查看电能误差和电能脉冲频率以及电能脉冲计数值

- ◆ 在源停止状态下,屏幕右上方显示电能参数的两个设定值(电能常数和脉冲个数);在源输出状态下,切换成显示电能误差的测量值 EP 误差、EQ 误差。
- ◆ 在源输出状态下,按【IMP】键,切换显示 EP 误差(有功电能误差)、EQ 误差(无功电能误差) 和 EP(Hz)(有功电能脉冲频率)、EQ(Hz)无功电能脉冲频率以及 EP 计数、EQ 计数。

5.1.16 ON/OFF 功能使用说明

- ◆ 在源输出状态下,按【ON/OFF】键,编辑框显示"源关闭,暂停输出",当前有输出的电压或电流参数项显示设定值同时会出现删除线(中划线),而实际电流或电压已降为 0;再次按【ON/OFF】键,编辑框显示"源打开,继续输出",此时继续按原设定值输出,电压或电流参数项显示实际的反馈测量值。
- ◆ 通过该键可以很好的实现源输出的暂停功能。

源输出状态下的界面

源停止状态下的界面

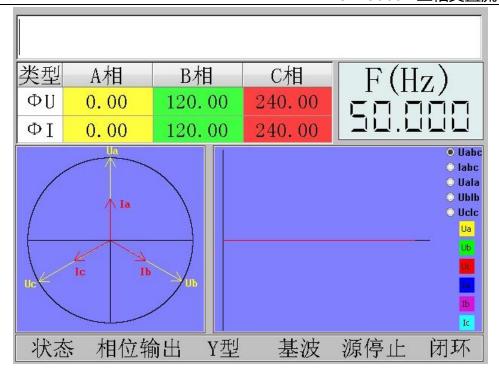
参量	A相	B相	C相		参量	A相	B相	C相	
57. 7V	219. 998	220.004	220.002	EP误差	57. 7V	219. 998	220. 004	220. 002	电能常数
1.0A	1.00004	1.00004	0. 99997		1.0A	1.00004	1.00004	0. 99997	
ΦU(°)	0.00	120.00	240.00	EQ误差	ΦU(°)	0.00	120.00	240.00	脉冲个数
ΦI(°)	0.00	120.00	240.00		ФІ(°)	0.00	120.00	240.00	
P (w)	0.0000	0.0000	0.0000	0.000	P (w)	0.0000	0.0000	0.0000	0.000
Q(var)	0.0000	0.0000	0.0000	0.000	Q(var)	0.0000	0.0000	0.0000	0.000
S (VA)	0.0000	0.0000	0.0000	0.000	S (VA)	0.0000	0.0000	0.0000	0.000
PF	1.00000	1.00000	1.00000	0.00000	PF	1.00000	1.00000	1.00000	0.00000
F(Hz)	50.000	50.000	50.000	Σ	F(Hz)	50.000	50.000	50.000	Σ
状态	标准输出	Y型 基沙	支 全波测量	量 源输出	状态	标准输出	Y型 基源	支 全波测量	量 源停止

5.1.17 全波测量/基波测量 (对电流、电压输出的测量)

◆ 全波测量:指界面上显示的电参量测量值包括基波和谐波。

◆ 基波测量:指界面上显示的电参量测量值只包括基波。

◆ 按【Xb】【Ent】键可交替切换"全波测量"和"基波测量"。 全波测量时,状态栏显示"全波测量",背景底色为灰色。如果要切换为基波测量,按【Xb】【Ent】键 全波测量切换成基波测量,状态栏显示"基波测量",背景底色为红色。


5.1.18 故障提示

- ◆ 加信号时如果电压输出短路或电流输出开路,装置界面会自动弹出相应的故障信息提醒操作人员,此时源自动关闭输出。操作人员确认并解除故障后,必须按【Ent】键清除故障信息后才能加载信号。
- ◆ 如果加载信号时界面弹出故障信息,但操作人员确认并无相应的操作故障时,有可能出现了装置自身的硬件故障,此时用户可关闭电源,然后重新上电加载信号,仍旧弹出故障信息,用户可联系我公司技术支持。

5.1.19 其他

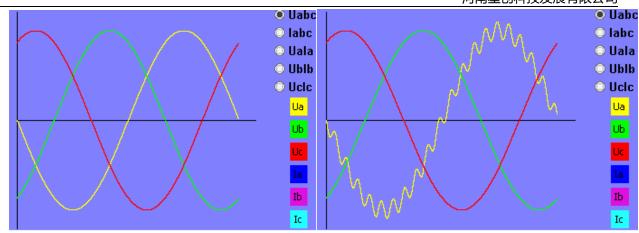
◆ 当输入的数据格式错误时,编辑框会自动提示"不合法操作",按任意键清除编辑框内的内容。

5.2 相位输出界面

5.2.1 基本功能

- ◆ 在该界面下对电压、电流、相位、有功功率、无功功率、频率的操作步骤同标准输出界面下的操作步骤相 同。
- ◆ 在该界面下,电压、电流试验点, 功率因数试验点的使用方法同标准界面下的使用方法相同。
- ◆ 在该界面下,不能改变电压、电流的量程档位。
- ◆ 在该界面下,不能使用 SET 全局设定模式。
- ◆ 在该界面下,不能设定电能参数。
- ◆ 在该界面下,【IMP】、【Set】键无效。

5.2.2 矢量图显示


◆ 实时显示三相电压,三相电流的相位;三相电压、三相电流的相位会随着测量值的改变而改变。

5.2.3 波形显示

- ◆ 真实反应电压、电流的输出波形。
- ◆ 分别显示三相电压,三相电流,A相电压与电流,B相电压与电流,C相电压与电流的波形。
- ◆ 波形之间的切换通过【→】键来实现。
- ◆ 直观显示基波波形和带谐波含量的波形。
- ◆ 例图如下:

三相电压基波波形

A 相电压带谐波的波形,BC 相基本波形

5.3 谐波显示

∏ Aᡮ	A相电压、电流谐波含量(%)和初始相位(°)								
	电压含量	电压相位	电流含量	电流相位	有功功率(₩)	无功功率(var)			
2	0.00	0.00	0.00	0.00	0.00	0.00			
3	0.00	0.00	0.00	0.00	0.00	0.00			
4	0.00	0.00	0.00	0.00	0.00	0.00			
5	0.00	0.00	0.00	0.00	0.00	0.00			
6	0.00	0.00	0.00	0.00	0.00	0.00			
7	0.00	0.00	0.00	0.00	0.00	0.00			
8	0.00	0.00	0.00	0.00	0.00	0.00			
9	0.00	0.00	0.00	0.00	0.00	0.00			
10	0.00	0.00	0.00	0.00	0.00	0.00			
11	0.00	0.00	0.00	0.00	0.00	0.00			
12	0.00	0.00	0.00	0.00	0.00	0.00			
13	0.00	0.00	0.00	0.00	0.00	0.00			
14	0.00	0.00	0.00	0.00	0.00	0.00			
状	态 谐	治波显示	· Y型	基波	全波测量	量 源停止			

5.3.1 基本功能

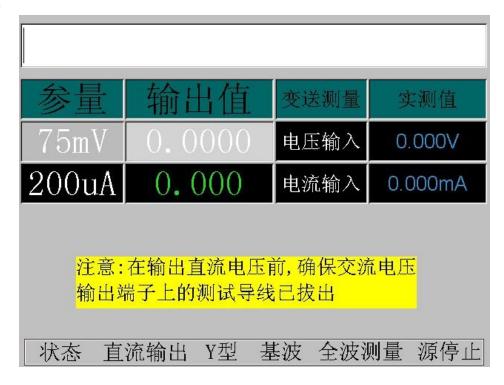
- ◆ 在该界面下对电压、电流、相位、有功功率、无功功率、频率的操作步骤同标准输出界面下的操作步骤相同;电压、电流试验点, 功率因数试验点的使用方法同标准界面下的使用方法相同。
- ◆ 在该界面下,不能改变电压、电流的量程档位。
- ◆ 在该界面下,不能使用 SET 全局设定模式。
- ◆ 在该界面下,不能设定电能参数。
- ◆ 在在该界面下,【IMP】、【Set】键无效。

5.3.2 查看三相电压,三相电流各次谐波

◆ 按【→】键,依次显示各相谐波。

5.3.3 谐波配方设置

- ◆ 本系列标准源含有谐波配方功能,即可以事先输入需要的谐波,并保存起来;当需要使用时,可以直接启动配方功能。
- ◆ 通过旋转编码器,可以依次选择数据编辑框->启动/停止按钮->方案选择按钮
- ◆ 谐波配方默认处于关闭状态,如果需要启动当前配方,可以选中启动/停止按钮,按【Ent】键,按钮由启动状态切换成停止状态,表明启动当前配方;再按【Ent】键,关闭谐波配方功能。
- ◆ 选中方案选择按钮,按【Ent】键,进入谐波配方设置界面:



◆ 谐波设置功能如下:

- 本系列标准源包含五组谐波配方方案,每组最多设定10次谐波。
- 按【→】键,依次选中谐波方案->谐波阶次设定->谐波含量设定->初始相位设定->电参量 Ua->电参量 Ia-> 电参量 Ub->电参量 Ib->电参量 Uc->电参量 Ic->增添按钮->删除按钮->确定按钮->取消按钮
- 按【←】键,功能和【→】键相同,但选择顺序相反。
- 选中谐波方案,按【Ent】键,弹出下拉框,转动编码器,依次选择方案,再按【Ent】键,下拉框收起。
- 选中谐波阶次,按【Ent】键,弹出下拉框,转动编码器,依次选择谐波阶次,再按【Ent】键,下拉框收起。
- 选中谐波含量,按【Ent】键,弹出下拉框,转动编码器,依次选择谐波含量,再按【Ent】键,下拉框收起。
- 选中谐波初始相位,转动编码器,设定谐波初始相位。
- 选中电参量 Ua,按【Ent】键,选中电参量 Ua,再按【Ent】键,选中取消。
- 选中电参量 Ia,按【Ent】键,选中电参量 Ia,再按【Ent】键,选中取消。
- 选中电参量 Ub,按【Ent】键,选中电参量 Ub,再按【Ent】键,选中取消。
- 选中电参量 Ib,按【Ent】键,选中电参量 Ib,再按【Ent】键,选中取消。
- 选中电参量 Uc,按【Ent】键,选中电参量 Uc,再按【Ent】键,选中取消。
- 选中电参量 Ic,按【Ent】键,选中电参量 Ic,再按【Ent】键,选中取消。

- 选中增添按钮,按【Ent】键,将设定的谐波放入临时存储框中。
- 选中删除按钮,按【Ent】键,将临时存储框设定的谐波删除。
- 选中确认按钮,将临时存储框内存储的谐波保存起来,且选中当前方案,退出谐波设置界面,返回谐波显示界面。
- 选中取消按钮,当前谐波设置界面设置的任何功能都不保存,并退出谐波设置界面,返回谐波显示界面。

5.4 直流输出

5.4.1 电压量程设定

- ◆ 按【Vrange】键,可直接切换直流电压量程档位(600V、300V、100V、10V、1V、200mV、75mV、灵活档(用户可自行设定))。
- ◆ 按【数字】【Vrange】键,可自行设定灵活档的直流电压量程,量程范围为 7mV-720V;如果设定电压量程小于 7mV,则设定失败;如果设定电压量程大于 720V,则按量程的最大设定值 720V 设定当前电压量程。
- ◆ 切换电压量程档位时,电压输出自动降为 0V。
- ◆ 直流电压和直流电流不能同时输出,如果当前是电流输出,按【Vrange】键,切换到电压输出。

5.4.2 电流量程设定

- ◆ 按【IRange】键,可直接切换直流电流量程档位(200uA、1mA、20mA、50mA、(用户可灵活设定值的档位))。
- ◆ 按【数字】【IRange】键,可自行设定灵活档的电流量程,量程范围为 20uA-60mA;如果设定电流量程 小于 20uA,则设定是被;如果设定电流量程大于 60mA,则按量程的最大设定值 60mA 设定当前电流量程.
- ◆ 切换电流量程档位时,电流输出自动降为 0A。
- ◆ 直流电压和直流电流不能同时输出,如果当前是电压输出,按【Irange】键,切换到电流输出。

5.4.3 直流电压设定

- ◆ 按【数字】【U】【Ent】键,设置直流电压。
- ◆ 按【U】【Ent】键,窗口显示 U = XXXXXX V , 光标定位在个位数上 , 按【←】键光标左移,按【→】 键光标右移,转动编码器可调节当前设定值。
- ◆ 按【-】【数字】【U】【Enter】键,设置当前直流负电压。
- ◆ 【数字】超当前电压量程 120%时,按量程 120%输出。

5.4.4 直流电流设定

- ◆ 按【数字】【I】【Ent】键,设置直流电流。
- ◆ 按【I】【Ent】键,窗口显示 I = XXX.XXX A , 光标定位在个位数上 , 按【←】键光标左移,按【→】 键光标右移,转动编码器可调节当前设定值。
- ◆ 按【-】【数字】【Enter】键,设置当前直流负电流。
- ◆ 【数字】超当前电流量程 120%时,按量程 120%输出。

5.4.6 变送测量功能

- ◆ 对-15V~0~15V信号的变送测量,在标准源后面板上输入直流电压。
- ◆ 对-30mA ~ 0 ~ 30mA 信号的变送测量,在标准源后面板上输入直流电流。

6 附录

STR3060B 三相交直流标准源支持 USB 鼠标操作:

使用 USB 鼠标操作有以下优点:

- ◆ USB 鼠标配合虚拟软件键盘,实现鼠标操作
- ◆ 配有多个虚拟软件键盘,操作方便快捷
- ◆ 面板操作和 USB 鼠标操作可同时进行, 且不相互影响
- ◆ 鼠标+虚拟软件键盘,可实现标准源的所有操作
- ◆ 上电、热插拔 , USB 鼠标不受影响

6.1 标准输出界面

打开标准界面,鼠标双击编辑框内部,自动弹出虚拟软件键盘,如下图:

类型		A	相	B相			C相					
220.0	V	0.	000	0.000 0.000 电角		The same of the sa		电制				
5. 0A		0.0	0000	0.000	000	C	. 00000	0		***		
ΦU(°)	0.	. 00	120.	00		240.00)	脉冲个数			
ФΙ(°)	0.	. 00	120.	00		240.00					
7	6	8	9	\triangle/Y	Vrang	ge	Irange	Ρį	gUp	PgDn		
4		5	6	ح	L		ı		Ф	W)	s/w	+
1		2	3	Р	Q		F		Χb	OFF		
0	4	3 7 8	•	Α	В	18	С	Z	ero	Ent		

6.1.1 虚拟软键盘按键功能说明

[Vange]	切换电压量程	[U]	设置、显示、调节电压
[Iange]	切换电流量程	[1]	设置、显示、调节电流
[PgUp]	界面切换,上一个界面	[Φ]	设置、显示、调节相位
【PgDn】	界面切换,下一个界面	[F]	设置、显示、调节频率
[Zero]	所有输出降为 0、取消谐波	[P]	设置、显示、调节有功功率
[Ent]	确认键	[Q]	设置、显示、调节无功功率
[s/w]	切换到虚拟快捷键盘	[Xb]	设置谐波
[\(\Delta / Y \)]	三相四线/三相三线	[A] [B] [C]	相序指示
[OFF]	源状态指示 (开源/关源)	[0-9]	数字键
[←]	后退键	[.]	小数点
		[-]	负 号 键

6.1.2 基本功能

◆ 对电压、电流、相位、有功功率、无功功率、频率的操作步骤同面板操作相同。

6.1.3 软件界面切换

◆ 按【s/w】键,切换到快捷界面,快捷界面如下:

参量		A相		B相			C相			
57. 7	I	0.0000		0.00	00	-	0.0000	l.	脉冲	中常数
1.0A	2	0.00000		0.000	000	C	00000	0	200	
ΦU(°)	0.	. 00	120.00		240.00		脉冲个数		
ФΙ(°)	0.	. 00	120.	00	240.00			-	
120%	1	00%	80%	C	1		Ф		tep 00%	s/w
60%	55	0%	40%	А	В		O		†	¥
20%	1	0%	5%	OL	0.5L		0.8L	. 1	L% ↑	.1%↓
0.5%	(0%	1	0C	0.50	\Box	0.8C	. 0	1% ↑	.01%↓

快捷键功能说明

[0] [0.5L] [0.8L] [1] [0.8C] [0.5C] [0C]	功率因数快捷键			
[U] [I] [Φ]	电压、电流、相位			
[A] [B] [C]	相序指示			
[120%] [100%] [80%] [60%] [50%] [40%] [20%] [10] [5%] [0.5%] [0%]	电压、电流百分比快捷键			
【.1%↑】【.01%↑】【0.1%↓】【0.01%↓】	电压、电流步进快捷键			
[1] 、[4]	灵活档步进快捷键			
[step/0.00%]	当前步进灵活档档位			
[S/W]	虚拟键盘切换			

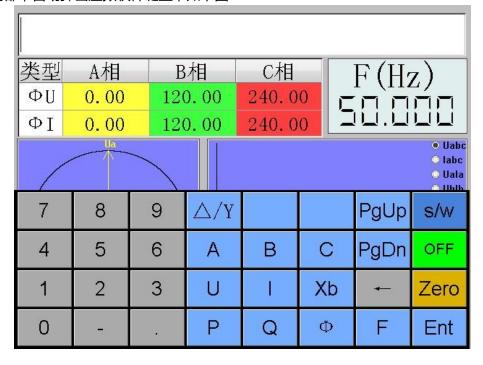
- ◆ 电压、电流快捷键的操作步骤同面板相同。
- ◆ 功率因数快捷键的操作步骤同面板相同。
- ◆ 虚拟软件键盘提供电压、电流的步长功能,具体的操作如下:
 - 步长包括 2 组固定的 0.01%↑↓、0.1%↑↓快捷键和 1 组灵活的步长快捷键,默认灵活步 长为 1%。
 - 按【U】【步长快捷键】,在原三相电压信号上增加或减少此次步进值,此次步进值=当 前电压量程*当前步进百分比。如果最终三相设定电压超出 120%量程,就按 120%量程 输出,如果最终三相设定电压小于 0V,就按 0V 输出。
 - 按【U】【A】【步长快捷键】,在原A相电压信号上增加或减少此次步进值,此次步进 值=当前电压量程*当前步进百分比。如果最终A相设定电压超出120%量程,就按120%量程输出,如果最终A相设定电压小于0V,就按0V输出。
 - 按【U】【B】【步长快捷键】,在原三相电压信号上增加或减少此次步进值,此次步进 值=当前

电压量程*当前步进百分比。如果最终 B 相设定电压超出 120%量程,就按 120% 量程输出,如果最终 B 相设定电压小于 0V,就按 0V 输出。

- 按【U】【C】【步长快捷键】,在原三相电压信号上增加或减少此次步进值,此次步进 值=当前电压量程*当前步进百分比。如果最终 C相设定电压超出 120%量程,就按 120% 量程输出,如果最终 C相设定电压小于 0V,就按 0V 输出。
- 按【I】【步进快捷键】,在原三相电流信号上增加或减少此次步进值,此次步进值=当前 电流量程*当前步进百分比。如果最终三相设定电流超出120%量程,就按120%量程输 出,如果最终三相设定电流小于0A,就按0A输出。
- 按【I】【A】【步进快捷键】,在原三相电流信号上增加或减少此次步进值,此次步进值 =当前电流量程*当前步进百分比。如果最终 A 相设定电流超出 120%量程,就按 120% 量程输出,如果最终 A 相设定电流小于 0A,就按 0A 输出。
- 按【I】【B】【步进快捷键】,在原三相电流信号上增加或减少此次步进值,此次步进值 =当前电流量程*当前步进百分比。如果最终 B 相设定电流超出 120%量程,就按 120% 量程输出,如果最终 B 相设定电流小于 0A,就按 0A 输出。
- 按【I】【C】【步进快捷键】,在原三相电流信号上增加或减少此次步进值,此次步进值 =当前电流量程*当前步进百分比。如果最终 C 相设定电流超出 120%量程,就按 120% 量程输出,如果最终 C 相设定电流小于 0A,就按 0A 输出。
- 双击【step】键,弹出虚拟数字软件键盘,设置步长,如下图:

参量 57.7\		0. (机 00	7		8	9	-		脉冲	中常数
	1. 0A 0. 00		200	4	3	5	6	Clr)		0000 th 0.86c
ΦI(°	ΦU(°) 0.0 ΦI(°) 0.0			1	2		3	Cii		脉冲个数 20	
120%	10	00%	8	0	90		E	int		step	s/w
60%	5	0%	4	40%		Α	В	С	1		V
20%	11	0%	2.	5%		OL	0.5L	0.8L	.1% ↑		. 1% ↓
0.5%	C)%	6	1		0C	0.5C	0.8C	. 0	1% ↑	.01%↓

6.1.4 脉冲常数、脉冲个数的设置


◆ 鼠标双击脉冲常数框内,弹出虚拟数字软件键盘,设置脉冲常数,如下图:

参量	A相	//-	7	8	9	-	
57.7V	0.0000			J		- 11	脉冲常数
1.0A	0.0000	4		5	6		
ΦU(°)	0.00	2	,	_	2	Clr	脉冲个数
ФІ(°)	0.00		1	2	3		20
P (w)	0.0000	1	0		Е	nt	0.000
Q(var)	0.0000		V.	0000	U. (JUUU	0.000
S (VA)	0.0000		0.	0000	0.0	0000	0.000
PF	1.00000)	1.	00000	1.0	0000	0.00000
F(Hz)	50.000		50	0.000	50.	. 000	Σ
状态	标准输出	Н	Y	型	基波	源停	止 闭环

- ◆ 脉冲常数的设定范围在【1 , 10^8 】之间;如果设定数据小于1 , 则设定失败;如果设定数据大于 10^8 , 则按电能常数的最大设定值 10^8 设定当前电能常数。
- ◆ 输入设定的数据后,按虚拟数字软件键盘上的【Ent】键,脉冲常数设置结束,收起虚拟数字软件键盘。
- ◆ 同理,双击脉冲个数框内,弹出虚拟数字软件键盘,设置脉冲个数。
- ◆ 脉冲个数的设定范围在【1,65535】之间;如果设定数据小于1,则设定失败;如果设定数据大于65535,则按脉冲个数的最大设定值65535设定当前脉冲个数。

6.2 相位输出界面

鼠标双击编辑框内部,自动弹出虚拟软件键盘,如下图:

◆ 对电压、电流、相位、有功功率、无功功率、频率的操作步骤同面板操作相同

6.2.2 快捷键操作

◆ 按【s/w】键,切换到快捷界面,快捷界面如下:

- ◆ 电压、电流快捷键的操作步骤同面板相同
- ◆ 功率因数快捷键的操作步骤同面板相同

6.3 谐波显示界面

鼠标双击编辑框内部,自动弹出虚拟软件键盘,如下图:

Λ * H	A相电压各次谐波含量(%)和初始相位(°)												
7	î	8	Ī	9			\/Y					PgUp	s/w
4	99	5	20	6			Α		В	2	С	PgDn	OFF
1		2		3			U		Ĺ		Xb	+	Zero
0	- 59						Р		Q	,	Φ	F	Ent

6.3.1 基本功能

◆ 对电压、电流、相位、有功功率、无功功率、频率的操作步骤同面板操作相同

6.3.2 快捷键操作

◆ 按【s/w】键,切换到快捷界面,快捷界面如下:

													启动
A相电压各次谐波含量(%)和初始相位(°)													
	含	量	村	1位			含量	1	相位	Ĺ		含量	相位
2 3	0.	.00	0	.00	1:	3	0.00)	0.00)	24	0.00	0.00
3	0.	.00	0	.00	1.	4	0.00)	0.00)	25	0.00	0.00
4 5	0.	.00	0	.00	1:	5	0.00)	0.00)	26	0.00	0.00
5	0.	.00	0	.00	10	6	0.00)	0.00)	27	0.00	0.00
120	%	100	%	80%	6		U		1		Φ	step 0.00%	s/w
609	%	509	%	40%	6		А		В		С	†	
209	%	109	%	5%)	9800	OL		0.5L	0	.8L	.1% ↑	.1%↓
0.5	%	0%	0	1		3	OC	C).5C	0	.8C	. 01% ↑	. 01% ↓

- ◆ 电压、电流快捷键的操作步骤同面板相同
- ◆ 功率因数快捷键的操作步骤同面板相同

6.4 直流输出界面

鼠标双击编辑框内部,自动弹出虚拟软件键盘,如下图:

参	量	输出	出值	40	变说	送测量	实测值		
75n	nV	0.0	000		电压	E输入	0.00	00V	
200	200uA		0.000			流输入	-10.423mA		
120%	100%	80%					step 0.00%	s/w	
60%	50%	40%					1	¥	
20%	10%	5%					. 1% ↑	. 1% ↓	
0.5%	0%						. 01% ↑	.01%↓	

6.4.1 基本功能

◆ 对电压、电流、相位、有功功率、无功功率、频率的操作步骤同面板操作相同

6.4.2 快捷键操作

◆ 按【s/w】键,切换到快捷界面,快捷界面如下:

参	参量 输出			占值 变送测量				可值	
75n	nV	0.0	000	41	电压	E输入	0.00	00V	
200uA		0.0	000		电流	流输入	-10.423mA		
7	8	9		Vr	ange	Irange	PgUp	s/w	
4	5	6					PgDn	OFF	
1	2	3					+	Zero	
0	2 7					4 4		Ent	

6.5 仪器校准(支持 USB 鼠标操作)

仪器校准界面如下:

6.5.1 输入密码

◆ 在进入仪器校准界面前,首先需要正确输入6位密码,否则不能进入

6.5.2 交流输出校准

◆ 输入密码正确后,首先进入交流输出校准界面,如下图所示

电压量程	幅度	A相	相	相	
57.7V ▼	标准电压				V
电流量程	标准电流				Α
1.0A ▼	实测电压				V
	实测电流				A
	相位	A相	相	相	•••
	电压标准相位				
保存	电流标准相位				
	电压实测相位				
校正参数	电流实测相位				Ĭ
11					

名词说明:

标准电压:标准源自身测得的当前电压(自动获取,不需要输入) **标准电流**:标准源自身测得的当前电流(自动获取,不需要输入)

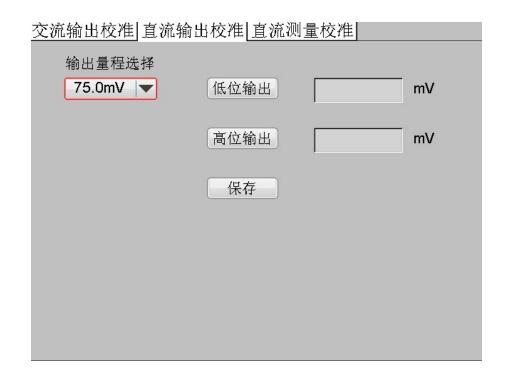
标准电压相位:标准源自身测得的当前电压相位(自动获取,不需要输入) **标准电流相位**:标准源自身测得的当前电流相位(自动获取,不需要输入)

实测电压:用标准电压表测得的当前电压(需要手动输入) **实测电流**:用标准电流表测得的当前电流(需要手动输入)

实测电压相位:用标准相位表测得的当前电压相位(需要手动输入) **实测电流相位**:用标准相位表测得的当前电流相位(需要手动输入)

具体操作如下:

- ◆ 界面的操作通过【→】、【←】、【Enter】键或旋转编码器来实现所有的操作。
- ◆ 编码器顺时针转动等同于按下【→】键 , 编码器逆时针转动等同于按下【←】键 ,编码器按下等同于按下 【Enter】键。
- ◆ 【→】、【←】键用于选择各个电参量,【Enter】键用于编辑、确定当前电参量。
- ◆ 当选中电压量程或电流量程时,按【Enter】键弹出下拉框选项,转动编码器或按【→】、【←】键,选中设置档位,再按【Enter】键,下拉框收起。
- ◆ 电压量程和电流量程设定后,按任意 U/I 试验点,系统将自动开源,并按当前电压、电流百分比输出电压、电流。
- ◆ 当需要手动输入实测电压、电流、电压相位、电流相位时。先按【Enter】键,进入可编辑状态,然后手动输入实测值,最后再按【Enter】键,退出编辑状态。


◆ 选中"校正参数"按钮,按【Enter】键,弹出"校正参数菜单",如下图所示:

- ◆ 选中"保存"按钮,按【Enter】键,系统将保存校准值。
- ◆ USB 鼠标支持以上的所有操作,操作方法和上位机操作方法相同。

6.5.3 直流输出校准

◆ 按【Set】键,系统将由交流输出校准界面跳转到直流输出校准界面,如下图所示:

具体操作如下:

- ◆ 界面的操作通过【→】、【←】、【Enter】键或旋转编码器来实现所有的操作。
- ◆ 当选中输出量程时,按下【Enter】键弹出下拉框选项,转动编码器或按【→】、【←】键,选中设置档位,

再按【Enter】键,下拉框收起。

- ◆ 当需要手动输入实测电压、电流时。先按【Enter】键,进入可编辑状态,然后手动输入实测值,最后再按 【Enter】键,退出编辑状态。
- ◆ 选中"保存"按钮,按【Enter】键,系统将保存校准值。
- ◆ USB 鼠标支持以上的所有操作,操作方法和上位机操作方法相同。

6.5.4 直流测量校准

◆ 按【Set】键,系统将由直流输出校准界面切换到直流测量校准界面,如下图所示:

具体操作如下:

- ◆ 当选中输入量程时,按下【Enter】键弹出下拉框选项,转动编码器或按【→】、【←】键,选中设置档位, 再按【Enter】键,下拉框收起。
- ◆ 选中"保存"按钮,按【Enter】键,系统将保存校准值。
- ◆ USB 鼠标支持以上的所有操作,操作方法和上位机操作方法相同。

6.6 参数设置(支持 USB 鼠标操作)

参数设置界面如下:

6.6.1 参数设置

- ◆ 界面的操作通过【→】、【←】、【Enter】键或旋转编码器来实现所有的操作。
- ◆ 设置串口通信参数时,按下【Enter】键弹出下拉框选项,转动编码器或按【→】、【←】键,选中设置档位,再按【Enter】键,下拉框收起。
- ◆ 当设置系统时钟时,光标自动选中数据的个位数。先按【Enter】键,进入可编辑状态,然后转动编码器或按【→】、【←】键调节系统时间,最后再按【Enter】键,退出编辑状态。
- ◆ USB 鼠标支持以上的所有操作,操作方法和上位机操作方法相同。

6.6.2 其他

◆ 按【Set】键,界面如下图所示:

- ◆ 界面的操作通过【→】、【←】、【Enter】键或旋转编码器来实现所有的操作。
- ◆ 在设置测量显示方式、蜂鸣器按键音、报警音、故障关源方式时,按下【Enter】键弹出下拉框选项,转动

编码器或按【→】、【←】键, 选中设置档位,再按【Enter】键,下拉框收起。

- ◆ 选中"确定"按钮,按【Enter】键保存当前参数。
- ◆ USB 鼠标支持以上的所有操作,操作方法和上位机操作方法相同。

7 设备接口接线说明:

脉冲输入接口:

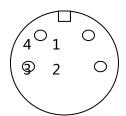

4 1 30 2 0

1:有功脉冲输入

2:公共地端

4:无功脉冲输入

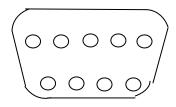
脉冲输出接口:



1:有功脉冲输出

2:公共地端

4:无功脉冲输出


RS485 通讯接口

1 : RS485-A

2: RS485-B

RS232 通讯口

